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Abstract. We present an approach to dilute Ising and Potts models, based on the Fortuin- 
Kasteleyn random cluster representation, which is simultaneously rigorous, intuitive and 
surprisingly simple. Our analysis yields, with no dimensional restrictions or other caveats, 
the following asymptotic form of the phase boundary. For the regular dilute model in 
which bonds have constant ferromagnetic coupling J with probability p and are vacant 
with probability 1 - p ,  the critical temperature scales as exp[-J/(kT,(p))] - Ip -pcI ,  imply- 
ing that the crossover exponent is @ = 1. I f  the constant couplings are replaced by a 
distribution F ( J )  with mass near J = 0, quite different crossover behaviour is observed. 
For example, if F ( J )  - J”  then, for p near p c ,  T,( p )  - Ip -pcI”y. 

The phase diagram of the dilute Ising and Potts models has been the subject of much 
investigation, both theoretical and experimental, for over a quarter of a century?. In 
the simplest version of the model, the nearest-neighbour exchange interaction assumes 
the values J and 0 with probability p and 1 - p ,  respectively. It is generally expected 
1.13 that as p decreases, the Curie temperature, TC( p ) S ,  remains non-zero until p reaches 
the percolation threshold, p c .  

Of particular interest is the behaviour of the model in the vicinity of the point 
p = p c ,  T = 0. Very early series arguments [3] as well as more sophisticated scaling 
analyses [4] suggested that this behaviour can be described by a crossover exponent 
@ according to 

exP{-Jl[kTc(P)ll- IP -Pel@ (1) 

with @ = 1. While there was no general and completely rigorous derivation, there is 
a rich history associated with the exponent 0. The value 0 = 1 was derived by 
Bergstresser [ 5 ]  in a paper notable both for its essential rigour and its regrettable lack 
of impact on later work in the field. Independently, = 1 was predicted to low order 
[ 6 ]  and, eventually, to all orders [7] in the E expansion, where E = 6-d  and d is the 

t For properties of dilute ferromagnets, see [ 11. For general properties of the Potts models, both uniform 
and dilute, see [2]. 
$ TJp) is usually defined as the threshold where the average (with respect to the random bonds) of the 
magnetisation at any given site becomes positive. It can be shown that this is also the dividing line between 
zero and positive magnetisation for almost all bond realisations at every site in the (unique) infinite network 
of active bonds. 
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dimensionality of the lattice. Still later, this crossover behaviour was found in special 
‘soluble’ models [8] and explained by an appealing geometric argument based on the 
structure of the incipient infinite cluster [ 9 ] .  In a beautiful experiment [ 101 the value 
Q, = 1 was measured in RbzCOpMg,-,F4. 

Bergstresser’s analysis [5] was based on an elegant differential inequality, the 
application of which relied on some natural, but unproven assumptions. One of these 
is that for any p above p c ,  there is indeed a Curie transition. Although this was known 
for some time for p sufficiently close to one [ 111, the fact that the critical concentration 
is exactly p c  has only been partially establishedt. Given the results on the critical 
concentration, together with Bergstresser’s analysis, one obtains a complete derivation 
of @ = 1 only in two dimensions [ 141. Furthermore, Bergstresser’s work covered neither 
Potts models, nor interactions with a continuum of non-zero values. 

In this letter, we present a complete proof of the asymptotics of the phase boundary 
for the &dimensional dilute q-state Potts models, which has several advantages over 
previous treatments. First, the derivation is non-perturbative and thus dispels recent 
doubts [ 151 concerning the validity of the result Q, = 1 obtained via the E expansion 
(at least for q 3 1). Second, and perhaps more importantly, our proof is simpler than 
previous analyses (both rigorous and non-rigorous), and hence provides some insight 
into the crossover mechanism. Finally, our analysis also yields the behaviour of systems 
in which the non-zero interaction J is replaced by a distribution of values; these cases 
were not treated by previous scaling or geometric arguments, nor considered within 
the context of the E expansion. For example, if J is replaced by some distribution 
F ( J )  - J ”  for small J,  then the proof yields 

TAP) - IP -pel"* ( 2 )  
in marked contrast to the logarithmic behaviour of Tc( p )  seen in (1). The only previous 
result of this sort seems to be that of Georgii [14] who obtained upper and lower 
bounds with different powers. It is worth noting that power law (rather than logarith- 
mic) behaviour is characteristic of Heisenberg magnets [ 11. Thus the result ( 2 )  indicates 
that the crossover behaviour alone is not sufficient to distinguish between dilute Ising 
(or Potts) models with ‘soft’ randomness and dilute Heisenberg models with ‘hard’ 
randomness. 

The remainder of this letter is devoted to the proof of the statements made above. 
The proof is based on some intuitive inequalities, derived in [ 161, for the Fortuin and 
Kasteleyn [ 171 random cluster representation of q-state Potts models. We begin with 
a statement of these bounds, followed by a brief explanation of how they arise naturally 
within the context of the random cluster representation. We then show how the bounds 
imply results on dilute and random magnets. 

Recall that the q-state Potts model is described by the Hamiltonian 

where ( i , j )  = b is a bond between a pair of sites i a n d j  of a regular lattice (or a finite 
subset thereof), B is the collection of all such bonds, U ,  = 1 , .  . . , q is the spin on site 
i, and S(u,, U,) = 1 if U, = U, and zero otherwise. The Jb are bond interactions, which 
for simplicity3 we take to be independent and identically distributed non-negative 

t For d = 1 this was proved by [ 121, while f o r d  2 3 this was proved, modulo equivalence of a ‘slab threshold’ 
with p c  in the pure percolation model, by [13]. 
$ One can easily extend the analysis of this letter (with some loss of notational clarity) to include cases 
other than identically distributed random variables; independence, however, is harder to eliminate. 
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random variables satisfying J h  = 0 with probabilitiy 1 - p ,  and 

PrOb[Jh S .! ( J  # 01 = F ( J ) .  (4) 

We will denote by M(q, {Jh)) the magnetisation of (the infinite volume limit of) the 
q-state system with bond interactions { J b } .  

In [16] bounds were derived which relate the magnetisation in two Potts models 
with different values of q and { J b } .  First, for fixed q and any Jb,  we define the following 
two ‘density parameters’: A b  = 1 -exp(-PJh) and AX = A b / [ A h  + q ( l  - A b ) ] ,  where P = 
l / (kT)  is the inverse temperature. Now consider two models characterised by para- 
meters q, {&} and q’, {Jb} with q 2 4’2  1. The domination bounds are: if A b  2 Ab for 
every bond of the lattice, then 

M(q’, {Jb)) M ( q ,  { J b ) )  (Sa) 

Analogous domination relations are also obeyed by other quantities, e.g. the free 
boundary condition two-point correlation function. 

Although we will not give the complete proofs of these relations here, let us explain 
how they follow from the random cluster representation. This representation expresses 
the q-state Potts model as a dependent percolation model with bond density parameter 
A b ,  as defined above. Indeed, if G is a subset of B, then the random cluster weight of 
the graph G is 

where C(G) is the number of connected components of G and Z(P, q)  is a normalisation 
constant (the partition function). In order to count C(G) properly, one must usually 
specify ‘boundary conditions’; see [ 151 for more details. The bonds of G will be referred 
to as ‘occupied’ while those of B\G will be called vacant. Observe that the above 
weights can be re-expressed? as 

where I(G) is the number of independent loops of the graph G and A X  is defined as above. 
Magnetisation in the q-state spin systems can be expressed, probabilistically, in 

the random cluster picture. Indeed, if the spins along the boundary of B are set to 
the spin state U =  1, then the magnetisation in the 1-direction of any site i is the 
probability that i is connected to the boundary by a path of occupied bonds in the 
associated random cluster model. Hence, in the infinite-volume limit, the spontaneous 
magnetisation is simply the percolation density of the random cluster system (with 
‘wired’ boundary conditions.) 

The domination bounds are simple consequences of expressions (6a)  and (6b), 
together with the Harris-FKG inequalities [18]; in fact, they are also valid for non- 
integer q and q‘, with M interpreted as the percolation density. The first bound follows 

t Equation ( 6 b )  follows easily from ( 6 a )  by direct calculation. I f  two endpoints of a bond b are not 
connected, then the number of connected components is reduced by one if b is occupied. Hence the ratio 
of these conditional occupation/vacancy probabilitiesis ( A , , / q ) / (  1 - A ( , ) .  On the other hand, when the 
endpoints are already connected, occupying the bond forms a loop; hence a factor of q is regained. 



L316 Letter to the Editor 

from the fact that if the Ab are held fixed, while q increases, then configurations with 
more components (hence smaller percolation density) are favoured. Conversely, if the 
A t  are held fixed, while q increases, then configurations with more loops (hence larger 
percolation density) are favoured. In particular, these bounds imply that at inverse 
temperature p, the random cluster representation for a q-state Potts model is less likely 
to percolate than an independent (i.e. q = 1) model at density p = 1 -e-@’; on the other 
hand, it is more likely to do so than the corresponding independent model at bond 
density p = (1 -e-@’)/[ 1 + ( q  - 1) eTB’]. In fact, the preceding sentence constitutes the 
essence of our analysis of dilute ferromagnets! 

Let us restrict attention to q 5 I t  in which case we will call the parameter-q 
random cluster model a ‘generalised ferromagnet’. A density-p diluted version of such 
a system (with or without additional randomness) is, on the one hand, a quenched 
ferromagnetic system with coupling distribution given by: J b  = 0 with probability 1 - p, 
and Prob[J, s J I J b  # 01 = F ( J ) ;  and on the other hand, a random cluster model on a 
density-p percolation network. For general q > 1, either point of view seems hopelessly 
more complicated than a uniform (i.e. non-random) system; however, when q = 1, the 
system is trivial. Indeed, it is ‘merely’ (independent) percolation at bond density 

1 - exp{ -pJb} = p [ 1 - e-8’] dF( J ) .  ( 7 )  I 
We may now adopt the second point of view, and apply the domination bounds 

to relate the systems of interest to q = 1 models. It follows that the generalised 
ferromagnetic models on the percolation cluster can be dominated by density 1, = 
[ 1 - e-p’] d F ( J )  percolation problem on the percolation network. Similarly, these 

systems dominate the density ,i: = J dF(J ) [  1 - e-@’]/[ 1 + ( q  - 1) e-p’] percolation- 
percolation problems. However, the former is percolation at density ,i,p and the latter 
is  percolation at density xgp. In particular, denoting by Pa( .) the percolation density 
of an ordinary (independent) percolation model, and by M (  q, F, p )  the magnetisation 
of the q-state dilute random Potts model, we have$ 

Pco(~,P> 3 M ( q ,  F, P) 3 P m ( h t p ) .  (8) 
The rest of this letter is devoted to listing various consequences of equation (8). 
(i)  For all q-state random and dilute Potts models on regular lattices, with dilution 

parameter 1-p, spontaneous magnetisation can occur if and only if p exceeds the 
percolation threshold, pE. In particular, this extends the results of [12,13] to all 
dimensions without any assumptions concerning the phase structure of ordinary perco- 
lation. 

(ii) The problem of magnetic systems defined on various ‘incipient structures’, 
such as inhomogeneous incipient percolation clusters [ 191 or the critical cluster of the 
one-dimensional l / r 2  percolation model [20] may be treated by relaxing the require- 
ment that the J b  have identical distribution. In contrast to the result (1) for regular 
dilute Potts magnets, the analogue of (8) for these systems implies that they are 
disordered at all non-zero temperatures. 

t For O <  q < 1 ,  the Hams-FKG inequalities fail. Even in these cases, somewhat weakened versions of the 
results’presented here may be obtained. However, the usual 9 tends to zero limit is singular (since one also 
scales the inverse temperature to zero); without some additional modifications, the domination bounds 
provide no information. 
$ I t  should be remarked that the magnetisation appearing here is the fhermodynamic magnetisation. In 
general, one obtains the thermodynamic magnetisation only if the finite-volume approximations are computed 
in systems with the ’right’ boundary conditions. 
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(iii) For the case of simple dilution (i.e. J = 1 with probability p and J = 0 other- 
wise), we have &p=p( l -e -@) and X:p=p(l-e-@)/[ l+(q-l)e-@].  Evidently 1- 
e-@ s p , / p  implies p d pc( p). Hence 

6 ( P  - P c ) / P .  (9) e-@,'P' 

Conversely, if (1 -e-@)/[ 1 + ( q  - 1) e-@] 
hard to show that 

p , / p ,  then p a p,( p). From this, it is not 

exp[ -p , (p ) I~  q - ' ( p - p c ) I p .  (10) 

Notice that (9) and (10) together imply the behaviour (1) with crossover exponent 
= 1. The rather trivial value of the crossover exponent may now be understood as 

a consequence of the fact that, for all values of p and p, the relevant quantities in the 
q-state Potts models are bounded above and below by analogous quantities in indepen- 
dent percolation models. 

(iv) For distributions F which are not zero in a neighbourhood of the origin, the 
asymptotics of the phase boundary are controlled by the behaviour of F near the 
origin. In particular, assuming that 

c ~ J ~  d F ( J )  C cZJ" 

P C ( 9 ,  E P) - ( P  - P c ) +  

(11) 

for J smaller than some J', one has 

(12) 

where '-' means there are upper and lower bounds of the stated form with constants 
depending on q, c1, c2 and J'. 
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